일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- nerf (neural radiance fields) #3dreconstruction
- splatrendering #3dpointcloud #differentiablerendering
- optimizationalgorithms
- pointbasedrendering #computergraphics #3dmodeling #volumerendering
- geometrylearning #shapeoptimization #gpuacceleration #realtimerendering
- computervisionresearch #3dreconstructiontechniques #graphicsresearch
- 3dcontentcreation
- anisotropickernels #ellipsoidalsplatting #orientedsplats #gradientbasedlearning
- computergraphics #3dmodeling #virtualreality #augmentedreality #gamedevelopment
- siggraph #3dsceneunderstanding #highquality3drendering #fastrendering
- siggraphtechniques #aigraphics #3dmodelingalgorithms
- highfidelityreconstruction #sceneunderstanding #computationalgraphics
- 3dsceneunderstanding #pointcloudrendering #neuralscenerepresentation
- gaussiansplatting #3dgaussiancovariance #nerf #3dreconstruction
- 3dpointcloud #differentiablerendering #3dscenerepresentation #neuralrendering
- gaussianprojection #covariancematrix3d #anisotropicgaussians #ellipsoidalsplatting
- advancedrenderingtechniques #neuralscenerepresentation
- realtimerendering #highquality3d #fastrendering
- gpuacceleration #aigraphics #virtualreality #augmentedreality #gamedevelopment
- turtlebot3 #터틀봇
- nerf (neural radiance fields) #3dreconstruction #pointcloudrendering #volumerendering
- machinelearning3d #deeplearninggraphics #airendering
- anisotropicgaussianlearning #gaussiansplatting #nonisotropicrenderinㅎ
- 3dscenerepresentation #covariancematrixoptimization #adaptivegaussians
- nextgengraphics #futureof3drendering #innovativerenderingtechniques
- 3drenderingtools #pointcloudsoftware #3dvisualizationsoftware
- 3dscanning #digitaltwintechnology #3dcontentcreation
- realtimerendering #machinelearning3d #deeplearninggraphics #computervision
- differentiablerendering #machinelearning3d #deeplearninggraphics
- gaussiansplatting #3dgaussiansplatting #pointbasedrendering
- Today
- Total
목록Artificial Intelligence/Deep Learning Basic (7)
Wiredwisdom
In MSE, we use the square of differences (hence "Square" in Mean Square Error). This means that the number of classifications builds the dimensions of our space. In this n-dimensional space, MSE measures the squared Euclidean distance between predicts vectors and label vectors.This actually applies the Pythagorean theorem extended to n dimensions. 추론값의 벡터와, 정답 값의 벡터가 있다면그 차이의 벡터를 유클리드 거리로 표현하는 ..
Mean Square Error : `:L_(MSE) = -1/nsum_i(y_i-q_i)^2`Cross-Entropy : `L_(CE) = -sum_i y_ilog(q_i)` MSE is based on Euclidean distance (Norm 2). Cross-Entropy is geometrically based on "Information Geometry". Simply put, MSE operates on a 2D plane where only distance matters and direction is straightforward. In contrast, Cross-Entropy operates on a curved manifold of probability distributions ..

`R2=1-(SST)/(SSE)=1-(Sigma(y_text(target)-bar y_text(predict))^2)/ (Sigma(y_text(target)-bar y_text(average))^2)`R2 > 0.8: 매우 좋은 모델R2 0.6~0.8: 괜찮은 모델R2 0.4~0.6: 개선 여지가 있는 모델R2 입력 데이터의 Normalization의 이점1. 그래디언트 폭주를 막을 수 있다.(Gradient Explosion)발산하게 되는 경우 2. Chain rule 영향 x = 입력값 w = 가중치 z = w * x # 첫 번째 계산 y = sigmoid(z) # 활성화 함수 적용 L = (target - y)² # 손실 함수 `(delL)/(delw)=(delL)/(dely)*(dely)/(d..

신경망의 결과 값과 정답 사이의 수치화 된 간격이 좁아질수록 정답에 근접한다는 단순한 논리를 토대로, 각 Node의 Value 를 조금씩 움직이면서 로스 펑션의 값의 변화를 보고서는, Loss Function이 작아지는 방향으로 가중치의 증가와 감소 방향을 정하게 되는 것이 학습의 기본이 된다.